
取消
清空記錄
歷史記錄
清空記錄
歷史記錄



LNPs 作為遞送系統(tǒng)
為了克服裸露的mRNA轉(zhuǎn)染的種種問題,已經(jīng)開發(fā)了保護(hù)性遞送系統(tǒng)。目前的mRNA疫苗(表 1)都在使用 LNP 技術(shù)。這說明了使用LNP能在穩(wěn)定mRNA 的同時(shí)并將其遞送到細(xì)胞中。mRNA疫苗中的LNP 由四種主要成分組成(見表1):中性磷脂、膽固醇、聚乙二醇 (PEG) 脂質(zhì)和可電離脂質(zhì)??呻婋x脂質(zhì)含有帶正電荷的可電離胺基團(tuán)(在低 pH 條件下電離),可在顆粒形成過程中與陰離子mRNA 相互作用,并在細(xì)胞攝取過程中促進(jìn)膜融合。此外,PEG化脂質(zhì)用于控制粒徑并充當(dāng)空間屏障起穩(wěn)定作用,防止儲(chǔ)存過程LNP微粒聚集。通過使用微流控混合生產(chǎn)技術(shù),這些脂質(zhì)成分與 mRNA 一起形成大小約為 60-100 nm 的顆粒。例如,SARS-CoV-2 候選疫苗nCoVsaRNA和ARCoV的平均粒徑分別為75 nm和89 nm。
表一:
LNPs與脂質(zhì)體的不同之處在于微粒中存在脂質(zhì),來自幾項(xiàng)研究的數(shù)據(jù)表明水也存在于微粒內(nèi)部某些空間。這意味著mRNA即使被包封也可能暴露于水性環(huán)境中。這種類型的內(nèi)部結(jié)構(gòu),先前已在未包載和包載siRNA的LNP中被冷凍電鏡所觀察到。類似地,mRNA-LNPs 的冷凍電鏡結(jié)果也顯示了電子致密核,勞氏紫(Thionine)對(duì)RNA進(jìn)行染色用于冷凍電鏡對(duì)比度增強(qiáng)(見圖2)。
盡管mRNA-LNP 的共同特征是脂質(zhì),但該的確切結(jié)構(gòu)特征及其對(duì)脂質(zhì)成分(摩爾比)和 mRNA 定位的依賴性仍存在爭(zhēng)議(見圖3)。正如 RiboGreen檢測(cè)實(shí)驗(yàn)所確定的那樣,mRNA 肯定位于 LNP 內(nèi)部。RiboGreen 是一種染料,當(dāng)與單鏈 mRNA 結(jié)合時(shí)會(huì)顯示熒光,但不能進(jìn)入 LNP。在 mRNA-LNP 制劑中,例如mRNA 疫苗的制劑,可與RiboGreen結(jié)合產(chǎn)生熒光的mRNA 比例非常低,因此,采用RiboGreen來測(cè)定的包封率通常 > 90%。綜上所述,冷凍電鏡(圖2) 和包封率證據(jù)表明,mRNA-LNPs形成納米粒子,其中包封了 mRNA,可免受外部介質(zhì)的影響,LNPs包封的mRNA的結(jié)構(gòu)有3種模型,這些主要來源于siRNA-LNPs分析(圖3)。
圖2 mRNA-LNP 的冷凍電鏡圖像顯示具有明顯不同電子密度的“囊泡”結(jié)構(gòu)
圖3 siRNA-LNP 和 mRNA-LNP 結(jié)構(gòu)的推測(cè)模型的示意圖 A:多層囊泡;B:納米結(jié)構(gòu)核;C:均質(zhì)核殼
mRNA疫苗所包封的mRNA會(huì)影響終LNP的結(jié)構(gòu):siRNA 在結(jié)構(gòu)和分子量大小上與 mRNA 有很大不同(表 2)并且N/P(可電離的陽離子脂質(zhì)與核苷酸磷酸鹽)摩爾比不同,N/P摩爾比分別為3和6(表 1)。mRNA 至少比 siRNA 大 100 倍,這會(huì)影響 LNP 的結(jié)構(gòu)。此外,有跡象表明 mRNA 位于 LNP 的核,而siRNA 更靠近表面,mRNA 可以形成“囊泡”(圖 2)。LNP 囊泡部分的組成是一個(gè)有爭(zhēng)議的問題,在這種狀態(tài)時(shí):“mRNA 可以從帶電的脂質(zhì)中解離,留在充滿溶劑的囊泡隔室中”。
表2 mRNA 和siRNA分子之間的差異
mRNA-LNP不太可能是(圖 3A)的多層囊泡模型。它與mRNA-LNP的 TEM結(jié)果中電子致密核位置不對(duì)應(yīng)。目前,大多數(shù)研究人員認(rèn)為 mRNA-LNP 貼近核殼模型(圖3 B和C),這意味著納米顆粒具有表面層和無定形的各向同性核。Viger-Gravel等,使用核磁共振光譜證明LNP結(jié)構(gòu)的兩種類型的核是可能的。
他們描述了一個(gè)被陽離子脂質(zhì)包圍(圖3B)的包含水孔的無定形核模型。他們還假設(shè)核中的脂質(zhì)可以均勻分散,中間有“小水球”(圖 3C)。后者(圖3B和C)跟siRNA-LNPs和mRNA-LNPs在實(shí)驗(yàn)觀察到的結(jié)果更吻合。
Arteta等人,使用冷凍電鏡、小角 X 射線散射 (SAXS) 和小角度中子散射 (SANS) 測(cè)量 mRNA-LNP 結(jié)構(gòu)模型。他們發(fā)現(xiàn)DSPC和PEG化脂質(zhì)以及部分可電離的陽離子脂質(zhì)和膽固醇是位于LNP 的表面,可電離的陽離子脂質(zhì)、膽固醇(取決于其濃度)、水和 mRNA 的主要部分分布在核內(nèi)部。有趣的是,他們的研究表明,各向同性LNP 核由24%(體積分?jǐn)?shù))的水組成。他們指出 mRNA 位于水柱內(nèi),水柱被陽離子脂質(zhì)包圍(如圖4所示)。這意味著 mRNA 至少部分暴露于LNP 內(nèi)部的水中,這可能導(dǎo)致mRNA在非冷凍條件下儲(chǔ)存時(shí)不穩(wěn)定,Sebastiani等人也報(bào)道了類似的結(jié)果。
因此,研究 mRNA 如何與 LNP 中的水和可電離的陽離子脂質(zhì)相互作用是一件很有趣的事。mRNA 是親水的,它可以通過靜電和氫鍵與可電離的陽離子脂質(zhì)相互作用(通常表觀pKa < 6.5)。這取決于 LNP 內(nèi)部的pH值,如果 LNP 外殼對(duì)質(zhì)子具有滲透性——這很可能,因?yàn)?2-(對(duì)甲苯胺基)-6-萘磺酸 (TNS) 和勞氏紫等離子化染料可以進(jìn)入 LNP 核,那么LNP內(nèi)部的pH值與制劑的其余部分應(yīng)該相似,約為7 到 8,這意味著大多數(shù)可電離的陽離子脂質(zhì)將不帶電。
然而,由于可電離的陽離子脂質(zhì)堆積在核中,它們可能表現(xiàn)出聚電解質(zhì)行為,導(dǎo)致 Henderson-Hasselbalch 方程的偏差,即滴定曲線的“拖尾”(脂質(zhì)膜內(nèi)的可電離脂質(zhì)的表觀pKa可能與實(shí)際值有較大偏差,這意味著pKa為6.5左右的可電離脂質(zhì)在脂質(zhì)膜內(nèi)的表觀pKa可能與理論值有1~2個(gè)pKa單位的偏差,所以pKa為6.5左右的可電離脂質(zhì)在pH值為7-8之間的脂膜內(nèi)時(shí),依然有可能絕大部分呈現(xiàn)帶正電的狀態(tài),注:紅色斜體部分是對(duì)一些較復(fù)雜概念的進(jìn)一步解讀,后同)。此外,mRNA 和可電離的陽離子脂質(zhì)之間的相互作用可能會(huì)影響電離行為。
對(duì)于 siRNA,發(fā)現(xiàn)與可電離陽離子脂質(zhì)存在較弱的靜電相互作用,這表明至少對(duì)于 siRNA-LNP 制劑,內(nèi)部的pH值接近或等于外部的pH值。對(duì)于 mRNA-LNP,尚未進(jìn)行此類實(shí)驗(yàn)研究。mRNA 和陽離子脂質(zhì)復(fù)合的分子動(dòng)力學(xué)模擬研究證明了脂質(zhì)-脂質(zhì)簇和脂質(zhì)-mRNA 簇的形成。靜電力和氫鍵都在驅(qū)動(dòng)陽離子脂質(zhì)和 mRNA 的相互作用。
圖4 mRNA-LNPs核中mRNA-水柱的示意圖
Arteta 等人的另一個(gè)有趣發(fā)現(xiàn)是他們的mRNA-LNP 的外殼是單層的。其他研究人員根據(jù)冷凍電鏡(圖 2)或 SANS結(jié)果分析提出,mRNA-LNPs 的外殼由一個(gè)或多個(gè)雙層組成。這些相互矛盾的發(fā)現(xiàn)表明,使用這些技術(shù)評(píng)估m(xù)RNA-LNP 殼的性質(zhì)是困難的,可能存在多種類型的mRNA-LNP 結(jié)構(gòu),其結(jié)構(gòu)取決于脂質(zhì)的性質(zhì)和mRNA-LNP 的制備方法。反過來,不同的結(jié)構(gòu)可能會(huì)對(duì)不同配方的穩(wěn)定性產(chǎn)生影響??傊?,問題仍然在于目前我們尚不清楚 mRNA-LNP 的結(jié)構(gòu)以及包封的mRNA 與各種脂質(zhì)成分之間的相互作用。
對(duì)各種 mRNA疫苗成分的分析表明,它們具有共同特征,但也存在差異(表 1)。LNP 配方、修飾核苷的使用、高GC含量以及常規(guī) mRNA 和 SAM 疫苗之間的長(zhǎng)度差異可能會(huì)影響這些 mRNA疫苗在儲(chǔ)存過程中的物理和化學(xué)穩(wěn)定性。
1、中文名稱:DLin-MC3-DMA
2、商品名:DLin-MC3-DMA
3、化學(xué)名稱:4-(N,N-二甲基氨基)丁酸(二亞油基)甲酯
(6Z,9Z,28Z,31Z)-heptatriacont-6,9,28,31-tetraene-19-yl 4-(dimethylamino)butanoate
4、分子式:C43H79NO2
5、生產(chǎn)商/manufacturer艾偉拓(上海)醫(yī)藥科技有限公司/ AVT (Shanghai) Pharmaceutical Tech Co,. Ltd.
6、CAS號(hào):1224606-06-7
7、用途:陽離子脂質(zhì)體
8、結(jié)構(gòu)式:
9、性狀:無色至淡黃色油狀液體
10、純度:98%
11、溶解性:不溶于水,易溶于DMSO、甲醇、乙醇。
12、分子量:642.09
13、保存條件:-20℃
14、注意事項(xiàng):避免與強(qiáng)酸、強(qiáng)堿、強(qiáng)氧化性物質(zhì)接觸
15、貨號(hào):002006
原文文獻(xiàn):
Linde,S;Dominik ,W;Jayesh A. K;Rein ,V;Gideon ,K;Wim ,J;Daan J.A. C.mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability.International Journal of Pharmaceutics.2021,601,120586
參考文獻(xiàn)來源:
1. Abdelwahed, W., Degobert, G., Stainmesse, S., Fessi, H., 2006. Freeze-drying ofnanoparticles: Formulation, process and storage considerations. Adv. Drug Deliv.Rev. 58 (15), 1688–1713. https://doi.org/10.1016/j.addr.2006.09.017.
2. Yanez Arteta, M., Kjellman, T., Bartesaghi, S., Wallin, S., Wu, X., Kvist, A.J.,Dabkowska, A., Sz′ekely, N., Radulescu, A., Bergenholtz, J., Lindfors, L., 2018. Successful reprogramming of cellular protein production through mRNA delivered
by functionalized lipid nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 115 (15),E3351–E3360. https://doi.org/10.1073/pnas.1720542115.
3. Ayat, N.R., Sun, Z., Sun, D.a., Yin, M., Hall, R.C., Vaidya, A.M., Liu, X., Schilb, A.L.,Scheidt, J.H., Lu, Z.-R., 2019. Formulation of biocompatible targeted ECO/siRNAnanoparticles with long-term stability for clinical translation of RNAi. Nucleic AcidTher. 29 (4), 195–207. https://doi.org/10.1089/nat.2019.0784.
4. Baden, L.R., El Sahly, H.M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D.,Spector, S.A., Rouphael, N., Creech, C.B., McGettigan, J., Khetan, S., Segall, N.,Solis, J., Brosz, A., Fierro, C., Schwartz, H., Neuzil, K., Corey, L., Gilbert, P.,Janes, H., Follmann, D., Marovich, M., Mascola, J., Polakowski, L., Ledgerwood, J.,Graham, B.S., Bennett, H., Pajon, R., Knightly, C., Leav, B., Deng, W., Zhou, H.,Han, S., Ivarsson, M., Miller, J., Zaks, T., 2021. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384 (5), 403–416. https://doi.org/10.1056/NEJMoa2035389.
5. Ball, R.L., Bajaj, P., Whitehead, K.A., 2016. Achieving long-term stability of lipidnanoparticles: examining the effect of pH, temperature, and lyophilization. Int. J.Nanomed. 12, 305–315. https://doi.org/10.2147/IJN.S123062.
6. Bloom, K., van den Berg, F., Arbuthnot, P., 2020. Self-amplifying RNA vaccines forinfectious diseases. Gene Ther. 1–13 https://doi.org/10.1038/s41434-020-00204-y.Brader, M.L., Williams, S.J., Banks, J.M., Hui, W.H., Zhou, Z.H., Jin, L., 2021.
7. Encapsulation state of messenger RNA inside lipid nanoparticles. Biophys. J. https://doi.org/10.1016/j.bpj.2021.03.012.
8. Brisco, M.J., Morley, A.A., 2012. Quantification of RNA integrity and its use formeasurement of transcript number. e144–e144 Nucleic Acids Res. 40. https://doi.
org/10.1093/nar/gks588.
9.Burke, P.A., Gindy, M.E., Mathre, D.J., Kumar, V., Prud’homme, R.K., 2013. Preparationof Lipid Nanoparticles. US 2013/0037977.
10. Buschmann, M.D., Carrasco, M.J., Alishetty, S., Paige, M., Alameh, M.G., Weissman, D.,2021. Nanomaterial delivery systems for mRNA vaccines. Vaccines 9 (1), 65. https://doi.org/10.3390/vaccines9010065.
