
取消
清空記錄
歷史記錄
清空記錄
歷史記錄



簡介
由于COVID-19在全球的大流行,mRNA疫苗被推到了生物技術(shù)和制藥工業(yè)的中心舞臺(tái)。由BioNTech/輝瑞、Moderna、CureVac、Sanofi/TranslateBio、Arcturus/Duke-NUS新加坡醫(yī)學(xué)院、倫敦帝國理工學(xué)院、泰國朱拉隆功大學(xué)和Providence Therapeutics領(lǐng)導(dǎo)的mRNA疫苗人體試驗(yàn)共有8個(gè)正在進(jìn)行。
值得注意的是,其中兩項(xiàng)試驗(yàn)已經(jīng)公布了3期臨床中期結(jié)果,報(bào)告了接種2次30 μg或100 μg劑量LNP包裹的編碼刺突蛋白免疫原的mRNA序列后,病毒感ran率降低94%以上。疫苗開發(fā)的速度也遠(yuǎn)超出了預(yù)期,在SARS-CoV-2序列*公開后10個(gè)月就有了如此**的效果。這一成功不*證明了生物技術(shù)和制藥業(yè)有應(yīng)對(duì)緊急和緊缺的全球性需求的能力,也證明了mRNA作為一種藥物的所具有的能力,在中mRNA作為一種預(yù)防性疫苗。本綜述的目的是概述mRNA遞送系統(tǒng)的發(fā)展、總結(jié)SARS-CoV-2 mRNA疫苗的臨床前和臨床發(fā)現(xiàn),并將其與其成功的遞送系統(tǒng)特征聯(lián)系起來。近有幾篇早于爆發(fā)的關(guān)于疫苗和zhi療mRNA遞送系統(tǒng)的的優(yōu)綜述已經(jīng)發(fā)表。
與小分子、DNA、寡核苷酸、病毒系統(tǒng)和蛋白質(zhì),包括抗體等的其他藥物形式相比,mRNA療法具有許多優(yōu)勢和幾個(gè)難點(diǎn)。與寡核苷酸和大多數(shù)小分子藥物有限的靶點(diǎn)相比,mRNA可以調(diào)節(jié)刺激和抑制作用方式,也能夠表達(dá)或替換缺陷蛋白,這擴(kuò)大了其使用的潛在適應(yīng)癥范圍。
與DNA相比,mRNA只需要獲得細(xì)胞質(zhì)的核糖體翻譯機(jī)制而不用進(jìn)入細(xì)胞核,因此沒有整合到人體基因組的風(fēng)險(xiǎn)。與蛋白質(zhì)和病毒系統(tǒng)相比,mRNA的制造是在細(xì)胞外快速制備的,并且蛋白質(zhì)產(chǎn)物具有天然的糖基化和構(gòu)象性質(zhì)。當(dāng)與脂質(zhì)納米顆粒(LNP)遞送系統(tǒng)結(jié)合時(shí),mRNA LNP的納米結(jié)構(gòu)特性也與病毒系統(tǒng)和循環(huán)的內(nèi)源性含脂質(zhì)乳糜微粒的大小、脂質(zhì)包膜和內(nèi)部基因組物質(zhì)等方面具有相似性,并且有助于其作為疫苗和其他zhi療藥物的遞送載體材料。
mRNA的難點(diǎn)在于其先天的免疫原性,對(duì)酶降解的敏感性以及細(xì)胞對(duì)裸露的mRNA攝取幾乎可以忽略不計(jì)。mRNA的先天免疫原性是由于toll樣受體(TLRs)、解旋酶受體(包括視黃酸誘導(dǎo)基因I (RIG-I)樣受體(RLRs)等)對(duì)單鏈和雙鏈RNA的識(shí)別,然后這些受體通過NF-κB和干擾素(IFN)調(diào)節(jié)因子IRF3和IRF7發(fā)出信號(hào)并轉(zhuǎn)位到細(xì)胞核,與I型IFN基因啟動(dòng)子結(jié)合,誘導(dǎo)I型IFN(IFN-α和IFN-β)的表達(dá),并伴有促炎細(xì)胞因子產(chǎn)生,如**壞死因子-α(TNF-α)、白細(xì)胞介素-6(IL-6)和白細(xì)胞介素-12(IL-12)。分泌的干擾素作為一種病毒防御機(jī)制,通過其受體和同一細(xì)胞及相鄰細(xì)胞中的JAK/STAT途徑發(fā)出信號(hào),**300多個(gè)受干擾素刺激的基因,包括蛋白激酶PKR。
雖然這種**可能有利于對(duì)mRNA疫苗產(chǎn)生免疫反應(yīng),但直接作用是通過eIF2a的PKR磷酸化來下調(diào)翻譯,這樣損害了eIF2的活性,抑制了mRNA翻譯,從而抑制了免疫原的蛋白質(zhì)合成。消除這種先天免疫反應(yīng)的主要方法是將天然存在的核苷如1-甲基二脲苷和核糖體RNA(通常不在mRNA中)中存在的其他核苷替換到mRNA序列中,這使得它不能被先天免疫傳感器檢測到。這種核苷修飾的免疫應(yīng)答mRNA是mRNA技術(shù)的基礎(chǔ),該技術(shù)近在BioNTech/輝瑞和Moderna疫苗試驗(yàn)中顯示了超過94%的有效性,這些技術(shù)是建立在對(duì)其他病原體試驗(yàn)的基礎(chǔ)上,下文將詳細(xì)描述。
由于TLR7和TLR8主要識(shí)別富含GU的單鏈RNA序列,CureVac采用了第二種方法包括密碼子優(yōu)化和盡量不使用鳥苷酸。mRNAzhi療的第二個(gè)難點(diǎn)是其對(duì)核酸酶的敏感性,例如在它血清中的半衰期< 5分鐘。盡管siRNA的化學(xué)修飾在提高穩(wěn)定性和降低免疫原性方面非常成功,但迄今為止,由于翻譯機(jī)制對(duì)化學(xué)修飾的敏感性,使得它們在mRNA修飾并不成功。mRNA的第三個(gè)難點(diǎn)是大多數(shù)細(xì)胞類型(除不成熟的樹突細(xì)胞外)缺乏對(duì)裸露的mRNA的細(xì)胞攝取吸收。
后兩個(gè)難點(diǎn)可以通過將核苷修飾或mRNA導(dǎo)入適宜遞送系統(tǒng)來解決,這樣既保護(hù)mRNA免受核酸酶的攻擊,又促進(jìn)細(xì)胞攝取。比如,當(dāng)在動(dòng)物模型中給藥時(shí),與裸露的mRNA相比,加入納米顆粒脂質(zhì)體可保護(hù)mRNA免受核酸酶的攻擊,并增強(qiáng)細(xì)胞攝取和表達(dá)高達(dá)1000倍。
質(zhì)粒DNA主鏈通過體外轉(zhuǎn)錄(IVT)產(chǎn)生zhi療性mRNA,其帶有5’端的帽子結(jié)構(gòu)、5’端的非翻譯區(qū)(UTR)、編碼目的蛋白開放閱讀框、3’端UTR和polyA尾。天然真核生物的5’端帽子(cap0)是一種倒置的7-甲基鳥苷(m7G),通過5’-5’三磷酸鹽與mRNA的**個(gè)核苷酸相連。
Cap0保護(hù)內(nèi)源性mRNA免受核酸酶攻擊,參與核輸出,與翻譯起始因子4結(jié)合,啟動(dòng)蛋白質(zhì)翻譯。另外兩個(gè)5’端帽子結(jié)構(gòu)被證實(shí)(帽子1和帽子2)在第二個(gè)或第三個(gè)核糖核苷酸上含有額外的甲基,其免疫原性低于cap0(因此更佳)。目前常用的加帽方法包括共轉(zhuǎn)錄加帽,產(chǎn)生具有高翻譯和低免疫原性的帽子1。5’端UTR參與翻譯起始,包含一個(gè)Kozak序列以及一個(gè)非帽依賴翻譯的核糖體進(jìn)入位點(diǎn)。開放閱讀框之后是3’端UTR,它影響mRNA的穩(wěn)定性和蛋白質(zhì)表達(dá)的持久性。polyA尾在大約100個(gè)殘基上編碼,有助于啟動(dòng)翻譯和延緩降解。體外轉(zhuǎn)錄(IVT)生產(chǎn)的mRNA需要經(jīng)過純化,以去除具有免疫原性的DNA和雙鏈RNA污染物。
上述的mRNA可以是核苷修飾的,也可以是未經(jīng)核苷修飾的序列,但不能進(jìn)行自我復(fù)制。能夠復(fù)制的自擴(kuò)增mRNA (samRNA)也正在進(jìn)行臨床試驗(yàn)測試,其長度約為10 kb,由于它們有四個(gè)額外編碼的非結(jié)構(gòu)基因,包括一個(gè)RNA依賴的RNA聚合酶,導(dǎo)致了細(xì)胞內(nèi)的自復(fù)制,但由于缺乏結(jié)構(gòu)基因,不會(huì)產(chǎn)生感ran性粒子。
samRNA不能被核苷修飾,因?yàn)檫@些修飾會(huì)干擾自身擴(kuò)增。在目前的臨床試驗(yàn)中,由于samRNA的擴(kuò)增過程,其通常使用較低的劑量(1-10 μg),而非擴(kuò)增的mRNA則需使用30-100 μg。表1總結(jié)了目前所有上述類別在進(jìn)行人體臨床測試的mRNA疫苗。這些臨床試驗(yàn)中的所有mRNA遞送系統(tǒng)都是納米顆粒脂質(zhì)體。
BioNTech/輝瑞LNP和Moderna LNP已經(jīng)公開其確切方,而其他一些公司尚未公開。其他產(chǎn)品很可能與Alnylam公司的 OnpattroTM產(chǎn)品相似(下文將進(jìn)一步描述),就像已經(jīng)公開的產(chǎn)品,可能都包含用的可電離脂質(zhì)。雖然所用的特定可電離脂質(zhì)可能未知,但其常用種類可以從期刊和**出版物中了解,如表1所示。
表1:目前在進(jìn)行人體臨床測試采用納米顆粒脂質(zhì)包裹的mRNA疫苗總結(jié)如下。臨床試驗(yàn)中的所有mRNA疫苗都使用納米顆粒脂質(zhì)體進(jìn)行遞送。其類別和組成尚未公開,因此基于現(xiàn)有文獻(xiàn)和**,它們可能的類別如下所示。
在之前,mRNA疫苗用于傳染病的臨床前和臨床研究,包括流感、寨卡病毒、艾zi病毒、埃博拉病毒、狂犬病、基孔肯雅病毒、瘧疾、生殖器皰疹、弓形蟲等。這些研究被總結(jié)在近的一些綜述中。
COVID-19
SARS-CoV-2
LNP:脂質(zhì)納米顆粒
CNE:陽離子納米乳劑
NLC納米結(jié)構(gòu)脂質(zhì)載體
PBAE:聚β氨基酯
PACE:聚(胺-共-酯)
Epo
hPBAE:超支化聚β-氨基酯
PEI:聚乙烯亞胺
pABOL:二硫化物連接的聚酰胺基胺
SPLP:質(zhì)粒-脂質(zhì)顆粒
SNALP:核酸脂質(zhì)顆粒
IFN:干擾素
HAI:血凝抑制試驗(yàn)
CVnCoV:CureVac mRNA LNP
mAbs:單克隆抗體
VHH:Vh結(jié)構(gòu)域
M2e:基質(zhì)蛋白2外域
Tfh:濾泡輔助T細(xì)胞
疫苗的早期遞送系統(tǒng)
魚精蛋白是一種富含精氨酸的陽離子蛋白的混合物,與mRNA形成絡(luò)合物。與裸露的mRNA相比,該絡(luò)合物提高了轉(zhuǎn)染效率。之后因?yàn)轸~精蛋白絡(luò)合mRNA部分抑制蛋白質(zhì)表達(dá),引入了游離mRNA和魚精蛋白絡(luò)合mRNA的混合物。動(dòng)態(tài)光散射實(shí)驗(yàn)表明,游離的mRNA的大小接近50nm,而魚精蛋白/mRNA絡(luò)合物的大小在250-350nm。
CureVac公司對(duì)狂犬病疫苗候選物CV7201就采用了這種方法,CV7201是一種凍干的、溫度穩(wěn)定的裸露的mRNA,由編碼狂犬病病毒糖蛋白(RABV-G)的游離和魚精蛋白絡(luò)合mRNA組成。在Balb/c小鼠中,兩次給予10 μg及以上的誘導(dǎo)的中和效價(jià)大于世界衛(wèi)生組織的保護(hù)閾值,并且兩次給予80 μg的劑量對(duì)大腦有保護(hù)作用。在一項(xiàng)通過皮下和肌內(nèi)途徑的注射80–640 μg劑量的1期人體試驗(yàn)中,*一個(gè)小組使用特定的注射裝置接受了三次80–400 μg劑量,達(dá)到了世衛(wèi)組織中和效價(jià)閾值。
其中101名參與者中有一名在高劑量下產(chǎn)生了嚴(yán)重的不良反應(yīng)(貝爾麻痹),同時(shí)有5%的參與者也產(chǎn)生嚴(yán)重不良反應(yīng)。不良反應(yīng)的總體發(fā)生率很高,其中有97%在注射部位產(chǎn)生不良反應(yīng),有78%產(chǎn)生全身不良反應(yīng)。由于魚精蛋白絡(luò)合mRNA的給藥效果并不理想,CureVac公司采用了來自Acuitas的納米顆粒脂質(zhì)體遞送系統(tǒng),并證明在Balb/c小鼠中以0.5 μg的低劑量 (與魚精蛋白絡(luò)合mRNA的10 μg相比)和非人的靈長類動(dòng)物中以10 μg的劑量給藥極大提高了中和效價(jià)。T細(xì)胞反應(yīng)的**以及引流淋巴結(jié)和注射部位中的白細(xì)胞介素-6(IL-6)和**壞死因子(TNF)表明了LNP在介導(dǎo)陽性免疫反應(yīng)中的作用。目前已經(jīng)啟動(dòng)了一項(xiàng)臨床試驗(yàn)(NCT03713086),預(yù)計(jì)2021年將報(bào)道中期結(jié)果。
通過將陽離子脂質(zhì)DOTAP與含有角鯊烯、山梨醇三油酸酯和聚山梨酯80的商業(yè)佐劑(MF59)在pH 6.5的檸檬酸鹽緩沖液中混合,開發(fā)了用于mRNA遞送的陽離子納米乳劑(CNE)。將編碼呼吸道合胞病毒糖蛋白(RSV-f)的自擴(kuò)增mRNA和來自DOTAP的NP胺聯(lián)合應(yīng)用,后者與mRNA中磷酸鹽的比例為7,生成了大小為129 nm的納米顆粒。
采用這種方法的一個(gè)優(yōu)點(diǎn)是能夠分別存儲(chǔ)CNE和mRNA,并且*在使用時(shí)將它們結(jié)合起來。在Balb/c小鼠中兩次給藥15 μg的中和效價(jià)高于亞單位佐劑疫苗的效價(jià)。在非人類靈長類動(dòng)物中兩次給藥75 μg就可以達(dá)到可檢測到的中和效價(jià)和T細(xì)胞反應(yīng)?;谶@一概念,一個(gè)**的團(tuán)隊(duì)創(chuàng)造了納米結(jié)構(gòu)脂質(zhì)載體(NLC),它是CNE和脂質(zhì)納米顆粒的混合物,由液態(tài)油相(如角鯊烯)和飽和甘油三酯的固相脂質(zhì)組成。NLCs含有編碼sika梅花鹿免疫原的自擴(kuò)增mRNA,其大小為40 nm,NP比為15,并且在單次注射低至0.1 μg或0.01 μg的劑量后能夠在C57BL/6小鼠中產(chǎn)生保護(hù)性中和效價(jià)。
用于mRNA遞送的聚合物
幾十年來,陽離子聚合物已廣用于核酸遞送,例如包括聚賴氨酸、聚乙烯亞胺(PEI)、DEAE-葡聚糖、聚β氨基酯(PBAE)和殼聚糖。*簡單方式即把過量陽離子聚合物與核酸混合,形成靜電結(jié)合的陽離子多聚體。
盡管已經(jīng)開發(fā)了許多聚合物,但它們不如用于核酸遞送的脂質(zhì)納米粒先進(jìn),并且能將它們成功應(yīng)用于的動(dòng)物研究的疫苗有限。PBAE與PEG脂質(zhì)混合,形成mRNA/PBAE/PEG納米顆粒脂質(zhì)體,能夠在小鼠靜脈注射后將mRNA遞送至肺部。在靜脈注射基因遞送**后使用*******作為考察報(bào)告,一種可生物降解的聚合物,聚胺共酯(PACE)三元共聚物在mRNA遞送中已經(jīng)被驗(yàn)證。通過控制分子量和端基化學(xué),PACE家族的一個(gè)10 kDa的結(jié)構(gòu)實(shí)現(xiàn)了與TransIT相同的體外轉(zhuǎn)染效率,TransIT是一種有效但有毒的、膠體不穩(wěn)定的且大體積商業(yè)產(chǎn)品。*******在靜脈注射20 μg時(shí)的體內(nèi)表達(dá)效果是TransIT的5倍。
合成了超支化聚β-氨基酯(hPBAE)用于通過吸入將mRNA遞送至肺。hPBAE mRNA復(fù)合物的大小為137 nm,在小鼠中霧化時(shí)能夠轉(zhuǎn)染25%的肺內(nèi)皮細(xì)胞,吸入沒有明顯的毒性,表達(dá)水平是分支化PEI的10倍。合成了分子量在8 kDa至167 kDa之間的二硫化物連接的聚酰胺基胺(pABOL),它能夠形成大小接近100 nm的多分散納米復(fù)合物。
這些使用自擴(kuò)增mRNA復(fù)合物的體內(nèi)熒光霉素的表達(dá)結(jié)果與肌肉注射PEI相似。當(dāng)對(duì)小鼠以增強(qiáng)免疫策略進(jìn)行血凝素(HA)流感免疫原給藥時(shí),低分子量8 kDa的pABOL中和效價(jià)高,超過PEI。8 kDa的pABOL能釋放1μg HA的自擴(kuò)增mRNA,也能部分抵御致命的流感,防止死亡,但不能防止體重**下降。倫敦帝國理工學(xué)院的研究組認(rèn)為,這種pABOL系統(tǒng)可以為SARS-CoV-2提供一種自擴(kuò)增的mRNA免疫原,但使用pABOL給藥SARS-CoV-2免疫原的效果比使用Acuitas優(yōu)化的納米顆粒脂質(zhì)體給藥的效果低1000倍。
總的來說,1μg pABOL中自擴(kuò)增RNA產(chǎn)生的結(jié)合抗體和中和效價(jià)與0.001μg優(yōu)化的脂質(zhì)納米顆粒相同(Dr. Anna Blakney)。許多其他聚合物系統(tǒng)能夠在體外或體內(nèi)遞送mRNA,但仍需對(duì)疫苗進(jìn)行測試。
研究進(jìn)展
當(dāng)前中SARS-CoV-2納米顆粒脂質(zhì)體的研究進(jìn)展
*早的mRNA轉(zhuǎn)染試劑是季銨化陽離子DOTAP結(jié)合可電離和促細(xì)胞融合的DOPE,從DNA轉(zhuǎn)染得到,用于多種細(xì)胞類型中的mRNA轉(zhuǎn)染。雖然在體外有效,但**性的陽離子季銨基團(tuán)使這些大體積的脂質(zhì)體迅速從體循環(huán)和靶向**肺中被**,并表現(xiàn)出毒性。
目前的LNP的前體是穩(wěn)定的質(zhì)粒-脂質(zhì)顆粒(SPLP),它是通過結(jié)合促細(xì)胞融合的可電離的DOPE和季銨化的陽離子脂質(zhì)DODAC而形成的,通過靜電作用包裹質(zhì)粒DNA,然后再用親水的PEG包被脂質(zhì)體,使其在水溶液中穩(wěn)定,并在體內(nèi)給藥時(shí)限制蛋白質(zhì)和細(xì)胞的相互作用。
遞送機(jī)制*關(guān)鍵的一步是:細(xì)胞內(nèi)吞后,DOPE在內(nèi)涵體內(nèi)被質(zhì)子化,并且由于DOPE的錐形結(jié)構(gòu),可以與內(nèi)涵體磷脂形成一個(gè)內(nèi)涵體溶解離子對(duì),以促進(jìn)內(nèi)涵體釋放。SPLP后來進(jìn)一步發(fā)展為含有siRNA的穩(wěn)定化核酸脂質(zhì)顆粒(SNALP),包括四種脂質(zhì):可離子化而非季銨化的陽離子脂質(zhì)、形成季銨化兩性離子的飽和雙層脂質(zhì)、DSPC、膽固醇和PEG-脂質(zhì)。除了與核酸靜電結(jié)合之外,SNALPs中的可電離脂質(zhì)起到融合脂質(zhì)的作用,并在內(nèi)涵體中質(zhì)子化,與內(nèi)涵體磷脂形成膜不穩(wěn)定離子對(duì)。目前已知DSPC有助于在PEG表面下形成穩(wěn)定的雙分子層。膽固醇起著多種作用,包括填充顆粒間隙、限制LNP-蛋白質(zhì)相互作用以及可能促進(jìn)膜融合。可電離的脂質(zhì)的**作用是在生理酸堿度下保持中性,從而消除循環(huán)中的陽離子電荷,但在pH為6.5時(shí)在內(nèi)涵體中被質(zhì)子化,促進(jìn)內(nèi)涵體逃逸。
2018年獲得臨床批準(zhǔn)的**siRNA產(chǎn)品的開發(fā)主要集中在優(yōu)化可電離脂質(zhì),其次是PEG-脂質(zhì)和LNP中四種脂質(zhì)的比例,以及LNP組裝和制備過程。根據(jù)分子形狀假說,發(fā)現(xiàn)C18尾中不飽和鍵的**數(shù)目是提供一個(gè)通過醚類與二甲胺頭部相連的二油酸尾部。
然而,將單一的連接體引入二油酸尾部,從二甲胺頭部到連接體的碳數(shù)經(jīng)過優(yōu)化,導(dǎo)致LNP可電離脂質(zhì)的pKa值接近可電離脂質(zhì)DLin-MC3-DMA的6.4。優(yōu)化的佳一步是將MC3/DSPC/膽固醇/PEG-脂質(zhì)的這些脂質(zhì)的摩爾比調(diào)整為50/10/38.5/1.5。
總體來說,從DLin-DMA到DLin-MC3-DMA的這一優(yōu)化過程需要在數(shù)千種**中篩選300多種可電離脂質(zhì),并導(dǎo)致效果增加200倍以及有效劑量相應(yīng)減少,以實(shí)現(xiàn)對(duì)> 80%的靶基因和**窗的長久抑制,OnpattroTM在2018年獲得臨床批準(zhǔn)。為siRNA開發(fā)的這種MC3制劑是下文所述的LNP后續(xù)開發(fā)的基礎(chǔ)(圖1)。這些LNP在被批準(zhǔn)用于SARS-CoV-2 mRNA疫苗后,正處于緊急使用。
圖1:mRNA納米顆粒脂質(zhì)體結(jié)構(gòu)。使用冷凍電子顯微鏡、小角中子散射和小角x光散射表明,mRNA脂質(zhì)納米顆粒包括低拷貝數(shù)的mRNA(1–10),并且mRNA在LNP中心與可電離脂質(zhì)結(jié)合。PEG脂質(zhì)與DSPC一起形成LNP的雙層表面。膽固醇和可電離的脂質(zhì)以帶電和不帶電的形式分布在整個(gè)LNP??稍?近的綜述中獲得其他遞送系統(tǒng)的結(jié)構(gòu)示意圖。
為了遞送核苷修飾的mRNA編碼的免疫原,Moderna使用上述Onpattro制劑中的MC3進(jìn)行了幾項(xiàng)臨床前和臨床研究。通過在這些研究中將一類新的可電離脂質(zhì)與MC3進(jìn)行了比較,證實(shí)了MC3是可電離脂質(zhì)。這一新種類包括脂質(zhì)H,它是Moderna公司的SARS-CoV-2產(chǎn)品mRNA-1273(表2)中可電離的脂質(zhì)SM-102。
使用核苷修飾的mRNA編碼寨卡病毒免疫原,MC3 LNP能夠保護(hù)缺乏ⅰ型和ⅱ型干擾素(IFN)信號(hào)的免疫低下小鼠,在免疫增強(qiáng)策略中使用一次10 μg劑量或兩次2 μg劑量將抑制小鼠的死亡。在免疫功能正常的小鼠中,預(yù)先用抗ifnar1阻斷抗體遞送來建立一個(gè)致死模型,也得到了相似的結(jié)果。在一系列核苷修飾mRNA編碼血凝素(HA)免疫原遞送的流感研究中,皮下給藥的MC3 LNP能夠以低至0.4 μg的單劑量充分保護(hù)小鼠免受死亡,即使使用單劑量高達(dá)10 μg體重也還是減輕。
單劑量50 μg或100 μg在雪貂中產(chǎn)生高HAI(血凝抑制試驗(yàn))效價(jià),在非人的靈長類動(dòng)物中兩次給藥200或400 μg也是如此。在被給藥100 μg的一小部分(23名)受試者中,所有受試者的HAI效價(jià)> 40(世衛(wèi)組織相關(guān)的保護(hù)指標(biāo)),比研究開始時(shí)的基線高出4倍以上。在一個(gè)更大的I期試驗(yàn)中,使用相同的MC3 LNPs遞送兩種不同的核苷修飾的mRNA編碼的HA免疫原,肌肉注射100μg H10N8免疫原導(dǎo)致所有23名受試者的HAI效價(jià)> 40。
盡管沒有發(fā)生危及生命的不良反應(yīng),但這23名受試者中有3人產(chǎn)生了嚴(yán)重的3級(jí)不良反應(yīng)。在三名受試者中有兩名出現(xiàn)可以暫停試驗(yàn)的3級(jí)不良反應(yīng)后,停止了預(yù)計(jì)的400 μg給藥量。在較低劑量下,盡管幾乎每個(gè)受試者都產(chǎn)生至少一次不良反應(yīng),但不良反應(yīng)的頻率和嚴(yán)重程度降低。這些研究是有前途的,也強(qiáng)調(diào)了相對(duì)狹窄的**窗,以不引起不良反應(yīng)的劑量下獲得保護(hù)性免疫。這讓人想起MC3前體DLin-DMA狹窄的**窗,需要提高效價(jià)以降低劑量,但仍然能實(shí)現(xiàn)有效的基因敲除。
表2:納米顆粒脂質(zhì)體中使用的可電離脂質(zhì)。納米顆粒脂質(zhì)體中使用的可電離脂質(zhì)的一個(gè)關(guān)鍵特征是,通過TNS染料結(jié)合試驗(yàn)測量的LNP可電離脂質(zhì)的pKa值應(yīng)在6–7的范圍內(nèi)。大多數(shù)可電離基團(tuán)的理論計(jì)算pKa值在8-9.5的范圍內(nèi),如下所示的氮原子在水介質(zhì)中,使用商業(yè)軟件從理論上估計(jì)這些值。pKa值從理論值到TNS值下降了2-3個(gè)點(diǎn),這是由于脂質(zhì)相中質(zhì)子溶劑化的能量高得多,導(dǎo)致在TNS分析過程中測量的脂質(zhì)中的pH比水相的pH增加了2-3個(gè)點(diǎn)。

由于siRNA產(chǎn)品需要對(duì)慢性疾病重復(fù)給藥,因此人們擔(dān)心MC3中二醇烷基尾的緩慢降解會(huì)導(dǎo)致重復(fù)給藥的累積和潛在毒性。MC3的生物可降解變體,脂質(zhì)319(表2),是通過用一種在體內(nèi)容易被酯酶降解的伯酯取代烷基鏈中的兩個(gè)雙鍵之一而產(chǎn)生的。脂質(zhì)319在肝臟中的半衰期不到一小時(shí),但它在肝臟中保持的基因沉默效率與MC3相似。
在體內(nèi)的降解產(chǎn)物及其分泌和脂質(zhì)319的無毒性質(zhì)得到了證實(shí)。在SARS-CoV-2的臨床前和臨床研究中采用脂質(zhì)319的這一研究為代,在BioNTech和CureVac產(chǎn)品中使用Acuitas LNP,盡管在倫敦帝國理工學(xué)院試驗(yàn)中自擴(kuò)增RNA的Acuitas LNP給藥被用于*近的專利申請中,以來自Acuitas的脂質(zhì)A9代(參考表2)。*近,BioNTech批準(zhǔn)的BNT162b2中的Acuitas可電離脂質(zhì)是ALC-0315(表2)。這些LNP的一個(gè)重要特點(diǎn)是,它們是通過在靜脈注射后篩選肝臟中的mRNA表達(dá)而開發(fā)的,可能還沒有完全優(yōu)化用于肌內(nèi)注射mRNA的疫苗。
Moderna*近開發(fā)了一類新的可電離脂質(zhì)來替代MC3,主要是由于上MC3緩慢降解,通過使其具有比二醇MC3烷基尾更大的分支來提高其效價(jià)。這種新型脂質(zhì)有一個(gè)乙醇胺可電離的頭部,連接到一個(gè)含有一級(jí)可降解酯的飽和尾部(如Maier 2013)和第二個(gè)飽和尾部,第二個(gè)飽和尾部在七個(gè)碳后使用一個(gè)不太可降解的二級(jí)酯分支成兩個(gè)飽和C8尾部,如脂質(zhì)5 (表2),其針對(duì)靜脈注射到肝臟進(jìn)行了優(yōu)化,還發(fā)現(xiàn)一個(gè)類似的脂質(zhì)H或SM-102,*適合進(jìn)行肌肉注射疫苗。
Acuitas研發(fā)脂質(zhì)的的一個(gè)特征是增加分支,脂質(zhì)A9總共有五條支鏈 (表2),而Moderna LNP中SM-102有三條分支。增加的分支產(chǎn)生了一種具有更類似圓錐形結(jié)構(gòu)的可電離脂質(zhì),因此,當(dāng)陽離子脂質(zhì)與內(nèi)涵體中的陰離子磷脂配對(duì)時(shí),將出現(xiàn)更大的膜破壞能力,符合幾十年前的分子形狀假說。
當(dāng)靜脈注射時(shí),24小時(shí)內(nèi)肝臟中未檢測到脂質(zhì)5,而MC3在肝臟中的初始劑量為71%,這驗(yàn)證了脂質(zhì)5的降解性。靜脈注射后,脂質(zhì)5在小鼠體內(nèi)的熒光素酶表達(dá)比MC3強(qiáng)3倍,在非人的靈長類動(dòng)物體內(nèi)的hEPO表達(dá)比MC3強(qiáng)5倍。效價(jià)的這些增加與內(nèi)涵體釋放的增加一致,并且推測可能是由內(nèi)涵體釋放的增加引起的,對(duì)于脂質(zhì)5,細(xì)胞中多達(dá)15%的mRNA從內(nèi)涵體中釋放,而對(duì)于MC3,這一比例為2.5%,后者與之前使用siRNA測量的MC3相似。
然而,在這些內(nèi)涵體釋放實(shí)驗(yàn)中,MC3的細(xì)胞攝取率比脂質(zhì)5的高四倍,因此這兩種LNP在細(xì)胞質(zhì)中釋放的mRNA的**量是相似的。在肌肉注射疫苗時(shí)進(jìn)行了同樣的可電離脂質(zhì)庫研究,同樣發(fā)現(xiàn)其可降解,并由于一級(jí)酯而迅速消除,并且與MC3相比,在蛋白質(zhì)表達(dá)或免疫原性方面,小鼠中流感核苷修飾的mRNA編碼免疫原的效果增加了3-6倍,盡管在非人的靈長類動(dòng)物中的免疫原性與5 μg增強(qiáng)免疫劑量的MC3相同。
脂質(zhì)H或SM-102(表2)被確定為**候選物,并且在結(jié)構(gòu)上*與脂質(zhì)5不同。脂質(zhì)5通過伯酯的兩個(gè)碳置換,是靜脈給藥的**藥物。脂質(zhì)5 LNP的pKa值為6.56,而脂質(zhì)H LNP的值為6.68,這表明pKa值的輕微增加可能有利于肌肉注射和靜脈注射給藥,盡管這種差異在檢測的可變性范圍內(nèi)。對(duì)大鼠肌肉注射部位的組織學(xué)檢查表明,與MC3相比,脂質(zhì)H LNPs吸引的富含中性粒細(xì)胞和巨噬細(xì)胞的炎癥浸潤較少,這可能會(huì)降低人體試驗(yàn)中注射部位的反應(yīng)原性。
脂質(zhì)納米顆粒在當(dāng)前SARS-CoV-2臨床試驗(yàn)中的應(yīng)用
1 BioNTech/輝瑞
BioNTech在SARS-COV-2試驗(yàn)的遞送系統(tǒng)脂質(zhì)成分主要是Acuitas的ALC-0315(表2)、DSPC、膽固醇和PEG-脂質(zhì)。CureVac和倫敦帝國理工學(xué)院可能也使用ALC-0315或A9(表2)。BioNTech開始用四種mRNA編碼的免疫原開發(fā)SARS-CoV-2疫苗,其中兩種是核苷修飾的,一種是未修飾的,一種是自擴(kuò)增的。
其中有關(guān)兩種核苷修飾的mRNA:BNT162b1是一種較短的、約1 kb的序列,其編碼刺突蛋白的受體結(jié)合結(jié)構(gòu)域,由折疊三聚結(jié)構(gòu)域修飾,通過多價(jià)顯示增加其免疫原性;
另一種BNT162b2是較長的、約4.3 kb的薛烈,其編碼二脯氨酸穩(wěn)定的全長的膜結(jié)合刺突蛋白。BNT162b2最近獲得了歐盟和美國的緊急批準(zhǔn)。在一項(xiàng)臨床前研究中,單次給藥0.2、1和5μg的BNT162b2后,可檢測到小鼠體內(nèi)的結(jié)合抗體和中和效價(jià),從**劑量到**劑量增加一個(gè)數(shù)量級(jí),并在Th2細(xì)胞因子水平非常低的CD4+和CD8+脾細(xì)胞中引起強(qiáng)烈的抗原特異性Th1 IFNγ和IL-2反應(yīng)。引流淋巴結(jié)也含有大量生發(fā)中心B細(xì)胞和CD4+和CD8+ T濾泡輔助細(xì)胞(Tfh)的數(shù)量也升高,這些細(xì)胞以前被認(rèn)為是由mRNA LNP疫苗中LNP單獨(dú)誘導(dǎo)。
在非人的靈長類動(dòng)物中,30 μg或100 μg的免疫增強(qiáng)劑量引起的結(jié)合抗體和中和效價(jià)是人類恢復(fù)期組的10倍以上,并產(chǎn)生強(qiáng)烈的Th1偏向性T細(xì)胞反應(yīng),這對(duì)預(yù)防疫苗相關(guān)的增強(qiáng)型呼吸道疾病很重要。在6只的獼猴中,兩次給藥100 μg后在支氣管肺泡灌洗液和鼻拭子中檢測不到病毒效價(jià)。對(duì)較小的mRNA編碼免疫原BNT162b1的1期臨床試驗(yàn)中計(jì)劃在第1天和第21天給藥10、30和100 μg。中等劑量30 μg誘導(dǎo)的抗體結(jié)合和中和效價(jià)分別比人類恢復(fù)期組高30倍和3倍。由于第一次給藥后出現(xiàn)嚴(yán)重的注射部位疼痛,因此未給予100 μg劑量的增強(qiáng)劑量。給藥30 μg的增強(qiáng)劑量后100%的受試者產(chǎn)生輕度或中度的注射部位疼痛。第二次接種30 μg劑量后,幾乎所有受試者都經(jīng)產(chǎn)生了輕度或中度的全身不良反應(yīng),如發(fā)熱、寒戰(zhàn)或疲勞。該試驗(yàn)還證明了來自外周血單核細(xì)胞有強(qiáng)Th1偏向性T細(xì)胞反應(yīng)。
一項(xiàng)2期臨床試驗(yàn)比較了年輕(18-55歲)和年長(65-85歲)受試者組接種 BNT162b1和BNT162b2后的一些指標(biāo)。老年組的結(jié)合和中和抗體效價(jià)略低,但仍高于恢復(fù)期組的受試者。與年輕組相比,老年組的不良反應(yīng)嚴(yán)重程度也降低了。BNT162b2與BNT162b1相比,全身不良反應(yīng)(發(fā)熱、寒戰(zhàn)、疲勞)的發(fā)生率**降低了約兩倍。正是BNT162b2耐受性的增加推動(dòng)了其3期臨床試驗(yàn),最近該試驗(yàn)宣布有效率達(dá)到94%,因?yàn)榘参縿┙M出現(xiàn)了162例COVID-19感ran,而接受兩次30 μg劑量BNT162b2的接種組*發(fā)現(xiàn)8例感ran。
2 Moderna
在Moderna的研究中,核苷修飾的mRNA編碼的免疫原是一種跨膜錨定的二脯氨酸穩(wěn)定的預(yù)融合刺突,具有天然的呋喃裂解位點(diǎn),并以LNP遞送,該LNP參照MC3 LNP原型,但用脂質(zhì)H (SM-102)替代MC3。mRNA LNP (mRNA-1273)接種劑量為1 μg而非0.1 μg,小鼠接種第1天和第21天,能誘導(dǎo)產(chǎn)生中和抗體。T細(xì)胞反應(yīng)似乎是一種Th1/Th2平衡的反應(yīng),在小鼠的病毒模型中,兩次給藥1 μg(非0.1 μg)后,小鼠肺部和鼻甲的病毒效價(jià)降低到基線。以獼猴為實(shí)驗(yàn)對(duì)象,兩次給藥劑量為100 μg,給藥后能產(chǎn)生高結(jié)合和中和效價(jià)以及在外周血中產(chǎn)生Th1偏向反應(yīng),同時(shí)也有強(qiáng)Tfh反應(yīng)。兩次給藥10 μg劑量后效價(jià)和T細(xì)胞反應(yīng)**降低。
同樣,100 μg劑量能夠?qū)⒅夤芊闻莨嘞匆汉捅鞘米又械牟《拘r(jià)降低到基線水平,而10 μg劑量*在肺部有效。在一項(xiàng)1期臨床研究中,每組15名患者,給藥頻率為間隔4周2次,給藥劑量為25、100或250 μg,100 μg劑量的結(jié)合和中和效價(jià)比恢復(fù)期高約10倍,相當(dāng)于25 μg的恢復(fù)期。所有受試者在100 μg和250 μg劑量下均產(chǎn)生了不良反應(yīng),250 μg組的14名受試者中有3名發(fā)生了嚴(yán)重的不良反應(yīng),并被停藥。在隨后對(duì)老年患者(56-71歲和71歲以上)進(jìn)行的1期臨床研究中,發(fā)現(xiàn)25 μg和100 μg劑量產(chǎn)生的結(jié)合抗體效價(jià)高于恢復(fù)期血漿中的,而中和效價(jià)與100 μg相當(dāng),但低于恢復(fù)期的25 μg。
即使是在老年組也有約80%的患者在第二次接種疫苗后仍出現(xiàn)不良反應(yīng)。外周血分析顯示CD4 T細(xì)胞反應(yīng)是Th1偏向型的。與25 μg劑量相比,100 μg劑量的中和效價(jià)更高,因此進(jìn)一步進(jìn)行了3期臨床試驗(yàn),中期結(jié)果顯示,安慰劑組出現(xiàn)了90例COVID-19感ran,而接種疫苗組只有5例感ran,防護(hù)有效率達(dá)到94.5%。一**委員會(huì)對(duì)Moderna的3期臨床試驗(yàn)的中期分析結(jié)果表明,出現(xiàn)嚴(yán)重不良反應(yīng)包括:9.7%的接種者出現(xiàn)疲勞、8.9%的接種者出現(xiàn)肌肉疼痛、5.2%的接種者出現(xiàn)關(guān)節(jié)tong、4.5%的接種者出現(xiàn)**,而在輝瑞/BioNTech的3期臨床試驗(yàn)中,出現(xiàn)疲勞的頻率較低,只有3.8%,**為2%。
3 CureVac
CureVac mRNA LNP (CVnCoV)采用的是一種非化學(xué)修飾的、序列工程mRNA,它編碼一種二脯氨酸穩(wěn)定的全長的S蛋白,采用Acuitas LNP遞送技術(shù),可能使用可電離脂質(zhì)ALC-0315。小鼠實(shí)驗(yàn)中劑量為2 μg時(shí),對(duì)兩次給藥之間的周數(shù)(從1到4不等)進(jìn)行了研究,發(fā)現(xiàn)較長的時(shí)間間隔在Balb/c小鼠中產(chǎn)生更高的效價(jià)和T細(xì)胞反應(yīng)以及平衡的Th1/Th2反應(yīng)。產(chǎn)生中和抗體需要第二次給藥,兩次給藥0.25 μg不足以產(chǎn)生中和抗體。在敘利亞金黃地鼠實(shí)驗(yàn)中,兩次給藥10 μg (非2 μg)能夠?qū)⒎?非鼻甲)中的病毒效價(jià)降低到基線。在劑量為2-12 μg的1期臨床試驗(yàn)中,*在**劑量12 μg時(shí)發(fā)現(xiàn)中和效價(jià)達(dá)到恢復(fù)期血清水平,這使得較高劑量(16和20 μg)被納入正在進(jìn)行的2期臨床試驗(yàn)。所有給藥劑量為12 μg的患者在每次給藥后都產(chǎn)生了全身不良反應(yīng),大多數(shù)為中度和重度,而> 80%的患者在局部注射部位產(chǎn)生了輕度和中度疼痛。
4 TranslateBio
Translate Bio使用的是一種非修飾的mRNA,其編碼雙突變的二脯氨酸穩(wěn)定的刺突蛋白,采用LNP技術(shù)平臺(tái),使用可電離脂質(zhì)C12-200,C12-200很可能是近期的基于ICE-或半胱氨酸的可電離脂質(zhì)家族合成的候選物。在Balb/c小鼠實(shí)驗(yàn)中,發(fā)現(xiàn)在0.2-10 μg范圍內(nèi)兩次給藥使結(jié)合和中和效價(jià)遠(yuǎn)高于恢復(fù)期水平。在非人的靈長類動(dòng)物實(shí)驗(yàn)中,15、45和135 μg劑量均產(chǎn)生超過人類恢復(fù)期的效價(jià),并且其免疫反應(yīng)也是Th1偏向型的。
5 Arcturus
Arcturus使用的是一種自擴(kuò)增的、全長的、未修飾的mRNA,其編碼融合前SARS-CoV-2全長的刺突蛋白,該LNP中使用帶有硫酯的可電離脂質(zhì),通過兩個(gè)額外的酯基將含胺的頭部和脂質(zhì)尾部相連接。這個(gè)脂質(zhì)家族中兩種可能的可電離脂質(zhì)是脂質(zhì)10a(在[111]的表4中)或脂質(zhì)2,2 (8,8) 4CCH3(在[57]的第33頁上)(表2)。
后者有三個(gè)分支,類似于Moderna脂質(zhì)H,但有一個(gè)可降解的硫酯連接到頭部。自擴(kuò)增mRNA的一個(gè)特征是熒光素酶基因的表達(dá)在肌肉注射給藥一周后保持在相當(dāng)恒定的水平,而常規(guī)mRNA的表達(dá)則迅速下降。在C57BL/6小鼠中,單獨(dú)接種疫苗使體重減輕和臨床評(píng)分增加。在具有高水平抗原特異性T細(xì)胞反應(yīng)的Th1偏向反應(yīng)中,只需要對(duì)小鼠以2 μg或10 μg(非0.2 μg)的劑量單次給藥,就可以使中和效價(jià)達(dá)到100以上。在K18-hACE2小鼠致死模型中,單次給藥2 μg或10 μg也可以100%保護(hù)小鼠,并且小鼠體重沒有減輕,且肺和腦的病毒效價(jià)降低到基線。Arcturus已經(jīng)完成了接種劑量為1-10 μg的1期臨床試驗(yàn),并選擇使用7.5 μg作為接種劑量進(jìn)行3期臨床試驗(yàn)。
6倫敦帝國理工學(xué)院
倫敦帝國理工學(xué)院使用了一種由Acuitas LNP技術(shù)遞送的、自擴(kuò)增的編碼預(yù)融合的穩(wěn)定的刺突蛋白的mRNA,該蛋白在由脂質(zhì)A9的**中有所描述(表2)。在Balb/c小鼠中兩次注射0.01 μg至10 μg的劑量后,產(chǎn)生了非常高的劑量依賴性抗體和中和效價(jià)。該反應(yīng)是強(qiáng)Th1偏向型,與較低的0.1和0.01 μg劑量相比,10和1 μg的劑量產(chǎn)生了高三倍的抗原特異性脾細(xì)胞反應(yīng)。該疫苗即將開始1期臨床試驗(yàn)。
7 朱拉隆功大學(xué),賓夕法尼亞大學(xué)
朱拉隆功大學(xué)與賓夕法尼亞大學(xué)合作,使用Genevant LNP技術(shù)開發(fā)一種天然刺突免疫原核苷修飾的mRNA LNP,采用的脂質(zhì)可能是CL1。他們的目標(biāo)是于2021年第一季度開始第一階段臨床試驗(yàn),并于2021年第四季度開始向泰國和七個(gè)周邊中低收入國家供應(yīng)疫苗。
8 Providence Therapeutics
Providence Therapeutics獲得了加拿大衛(wèi)生部的授權(quán)通知,可以對(duì)PTX-COVID-19B mRNA LNP疫苗進(jìn)行人體臨床試驗(yàn)。對(duì)編碼受體結(jié)合域(具有或不具有呋喃裂解位點(diǎn)突變的全長刺突蛋白)的三種候選mRNA進(jìn)行臨床前研究,按照免疫增強(qiáng)方法以C57BL6小鼠為實(shí)驗(yàn)對(duì)象以20 μg的劑量給藥。
該疫苗使用來自Genevant的未公開脂質(zhì)(可能與表2中的CL1相似)的臨床前數(shù)據(jù),顯示出全長的和呋喃突變的有效載荷具有強(qiáng)大的中和效價(jià)。第一階段臨床試驗(yàn)計(jì)劃于2021年第一季度開始,同時(shí)疫苗的生產(chǎn)和銷售計(jì)劃于同年獲得監(jiān)管機(jī)構(gòu)的批準(zhǔn)。
9 儲(chǔ)存和供應(yīng)
實(shí)驗(yàn)室制造的大多數(shù)RNA LNP可以在4℃下保存幾天,但隨后出現(xiàn)顆粒尺寸增加和生物活性逐漸喪失(如熒光素酶表達(dá))的特點(diǎn)。在以前的siRNA LNP方中,通常由于LNP聚集導(dǎo)致尺寸隨著時(shí)間增大。為了mRNA LNP疫苗能穩(wěn)定的儲(chǔ)存和供應(yīng),需要采用冷凍形式。Moderna的COVID-19疫苗需要在-25℃至-15℃之間儲(chǔ)存,在2℃至8℃之間可穩(wěn)定儲(chǔ)存30天,在8℃至25℃可穩(wěn)定儲(chǔ)存12小時(shí)。
輝瑞/BioNTech的COVID-19疫苗需要在-80℃至-60℃之間儲(chǔ)存,解凍之后在2℃至8℃之間儲(chǔ)存最多5天,然后在注射前用鹽水稀釋。在儲(chǔ)存和運(yùn)輸過程中,輝瑞疫苗所需的極低溫度比Moderna疫苗所需的常規(guī)冷凍溫度更難達(dá)到。這些溫度差異背后的原因并不明顯,因?yàn)閮煞N疫苗都含有類似的高濃度蔗糖作為冷凍保護(hù)劑。Moderna的mRNA LNPs被冷凍在Tris和醋酸鹽兩種緩沖液中,而輝瑞/BioNTech疫苗*使用磷酸鹽緩沖液。眾所周知,磷酸鹽緩沖液不適合冷凍,因?yàn)樗鼈內(nèi)菀壮恋矶医Y(jié)晶會(huì)引起pH突變。凍干工藝對(duì)mRNA LNPs來說是一個(gè)技術(shù)難點(diǎn)。然而,Arcturus已經(jīng)聲明,他們的COVID-19 mRNA疫苗在凍干形式中是穩(wěn)定的,盡管這種凍干制劑的溫度穩(wěn)定性尚未公開,但這可能會(huì)**簡化供應(yīng)。
脂質(zhì)納米顆粒
許多脂質(zhì)樣實(shí)體,稱為脂質(zhì)類化合物類脂,最初是為siRNA遞送而開發(fā)的,隨后用于mRNA遞送。C12-200就是一個(gè)例子(表2),由于其通過靜脈給藥在肝細(xì)胞基因沉默中的高效性,而在類脂家族中脫穎而出。為了實(shí)現(xiàn)高效的肝臟靶向基因沉默,C12-200與MC3 Onpattro原型相同的脂質(zhì)相結(jié)合,即50%可電離脂質(zhì)、10% DSPC、38.5%膽固醇和1.5% PEG-脂質(zhì)。
后來的一項(xiàng)研究發(fā)現(xiàn),通過將可電離脂質(zhì)的百分比降低到35%,同時(shí)將可電離脂質(zhì)與核酸的重量比從5增加到10,并用促細(xì)胞融合的不飽和DOPE取代DSPC,可以將C12-200對(duì)同一肝臟靶點(diǎn)的mRNA遞送效率提高7倍。
有趣的是,這種優(yōu)化的方將mRNA表達(dá)提高了7倍,但沒有改變siRNA的沉默效率。在這種方中,C12-200也被研究用于小鼠和非人靈長類動(dòng)物的mRNA介導(dǎo)的蛋白質(zhì)替代療法,但是當(dāng)皮下注射時(shí),通過組織學(xué)觀察,它會(huì)產(chǎn)生強(qiáng)烈的炎癥反應(yīng)。C12-200是一種小分子樹狀聚合物,具有五個(gè)烷基鏈和五個(gè)氮原子,根據(jù)ACDLabs Percepta等商用軟件進(jìn)行電離分析,發(fā)現(xiàn)其中三個(gè)似乎是可質(zhì)子化的(表2)。另一種樹枝狀大分子脂質(zhì),5A2-SC8,在觀察過程中發(fā)現(xiàn)對(duì)肝臟具有高siRNA傳遞效率,并且還具有五個(gè)氮原子和五個(gè)短烷基鏈(表2)。
類脂5A2-SC8對(duì)于mRNA遞送的效率很低,除非通過將可電離的脂質(zhì)摩爾分?jǐn)?shù)降低到24%,使用DOPE代替DSPC,并增加其他脂質(zhì)比例來改變其方參數(shù),但是同時(shí)5A2-SC8與mRNA的重量比將增加到20。
這些方的改變似乎是這些樹枝狀大分子型類脂成為有效的mRNA遞送載體所必需的,這可能是因?yàn)樗鼈兙哂卸噘|(zhì)子的頭部和樹枝狀大分子結(jié)構(gòu)。另一種非常高分子量的修飾樹枝狀大分子被用于遞送編碼流感、埃博拉和弓形蟲免疫原的自擴(kuò)增mRNA,并且在小鼠實(shí)驗(yàn)中,在單次給藥40 μg的高劑量或免疫增強(qiáng)方法注射4 μg后(這對(duì)復(fù)制RNA也是高劑量),發(fā)現(xiàn)可以避免三種病原體的感ran。最近對(duì)類脂進(jìn)行研究發(fā)現(xiàn),與其他類脂相比,這種小的三氮樹枝狀大分子的四個(gè)烷基鏈末端增加一個(gè)碳支鏈,肝臟表達(dá)能力提高了10倍以上。
這種效價(jià)的增加與LNP的pKa值沒有相關(guān)性,但與pH為 5時(shí)TNS染料的**熒光有相關(guān)性,這表明內(nèi)涵體質(zhì)子化的幅度與mRNA表達(dá)相關(guān),推測可能是促進(jìn)內(nèi)涵體逃逸。根據(jù)分子形狀假說,增加的碳支鏈也可以產(chǎn)生一個(gè)更錐形的結(jié)構(gòu),從而產(chǎn)生更多的膜破裂。
編碼抗體基因的mRNA LNP的遞送
目前市場上有70多種單克隆抗體(mAbs),全球銷售額為1250億美元。使用mRNA編碼的抗體具有以下優(yōu)勢,包括有益于天然翻譯后修飾的內(nèi)源性蛋白質(zhì)合成,以及是一種不需要細(xì)胞培養(yǎng)和對(duì)蛋白質(zhì)產(chǎn)品大量純化和表征的簡化生產(chǎn)方法。通過將編碼VRC01(一種針對(duì)HIV-1的中和抗體)輕鏈和重鏈的純化核苷修飾的mRNA包封到Acuitas LNPs中,顯示出遞送mRNA編碼的mAbs可能用于被動(dòng)免疫。
以 Balb/c小鼠為實(shí)驗(yàn)對(duì)象,靜脈注射30 μg mRNA LNP(靶向肝細(xì)胞),表達(dá)mAbs超過一周,血清水平達(dá)到150 μg/ml,高于直接注射600 μg mAbs,每周注射能夠保持血清水平在40 μg/ml以上。CD34-NSG人源化小鼠注射30 μg和15 μg的mRNA LNP可以抵御24小時(shí)后的HIV-1攻擊,入侵2周后的血清病毒RNA復(fù)制分析也證明這一觀點(diǎn)。
CureVac的一項(xiàng)研究證實(shí)了**性非修飾mRNA編碼抗體的可行性,該研究也使用了Acuitas LNPs,其中選擇了對(duì)多種狂犬病毒株具有**中和能力的IgG mAbs,以及針對(duì)肉毒桿菌**的純重鏈Vh結(jié)構(gòu)域(VHH)中和劑。還生產(chǎn)了一種靶向CD20的、mRNA編碼的利妥昔單抗,其中CD20是非霍奇金淋巴瘤**的**。
動(dòng)物實(shí)驗(yàn)通過靜脈注射使用的是靶向肝細(xì)胞的Acuitas LNP。小鼠單次給藥40 μg產(chǎn)生的血清抗體水平剛剛超過10 μg/ml,1個(gè)月后逐漸下降到1 μg/ml。相同劑量下,VHH單結(jié)構(gòu)域中和劑產(chǎn)生的抗體水平高10倍,但由于缺乏Fc區(qū),半衰期*有幾天。當(dāng)在狂犬病病毒的致命攻擊之前1天或之后2小時(shí),對(duì)小鼠單次靜脈注射40 μg也能夠完全保護(hù)小鼠。
同樣,在致命的肉毒桿菌**攻擊后6小時(shí)單次給藥40 μg也完全保護(hù)了動(dòng)物。第三個(gè)攻擊模型是將Raji-luc2 B細(xì)胞淋巴瘤細(xì)胞靜脈移植并且生長4天,然后在18天內(nèi),在Acuitas LNP中5次給藥10或50 μg mRNA編碼的利妥昔單抗,結(jié)果是保護(hù)了所有動(dòng)物,并且50 μg劑量能夠完全消除**生長。
將T細(xì)胞募集到**細(xì)胞的雙特異性抗體也被編碼在修飾的mRNA結(jié)構(gòu)中,并使用商業(yè)轉(zhuǎn)染試劑TransIT在體內(nèi)遞送,該試劑在肝臟遞送方面不如目前的LNP有效。
該mRNA結(jié)構(gòu)可維持循環(huán)和生物活性的雙特異性抗體超過6天,而相同5 μg劑量的蛋白質(zhì)-雙特異性抗體在**后減少至接近基線。第二項(xiàng)研究也是使用VHH形式的雙特異性抗體進(jìn)行的,其中一個(gè)結(jié)合保守的甲型流感基質(zhì)蛋白2外域(M2e)的VHH基因與另一個(gè)小鼠Fcγ受體IV (FcγRIV) 特異性結(jié)合的VHH基因相連,以便將表達(dá)FcγRIV的先天免疫細(xì)胞募集到表達(dá)M2e的流感感ran細(xì)胞中。
這些核苷修飾過結(jié)構(gòu)的mRNA使用DOTAP/膽固醇制備的LNPs遞送,通過氣管內(nèi)滴注到小鼠肺中,4小時(shí)后,用致死劑量的流感病毒攻擊,80%的小鼠免受致死劑量的影響,盡管它們產(chǎn)生明顯的體重減輕,并且DOTAP/膽固醇mRNA納米粒導(dǎo)致粒細(xì)胞暫時(shí)流入肺部,同時(shí)血清IL-6細(xì)胞因子水平也有所升高。
**,在基孔肯雅感ran幸存者的B細(xì)胞中發(fā)現(xiàn)的一種有效中和抗體被編碼在一種核苷修飾的mRNA結(jié)構(gòu)中,該結(jié)構(gòu)由一個(gè)可能含有MC3或脂質(zhì)5的LNP遞送。靜脈注射0.5 mg/kg(10 μg)編碼mAb的mRNA,24小時(shí)預(yù)注射的小鼠獲得了抗病毒攻擊的保護(hù)作用,而注射蛋白mAb需要2 mg/kg的劑量。在感ran后4小時(shí),對(duì)小鼠注射高劑量10 mg/kg (200 μg),使小鼠避免感ran。非人的靈長類動(dòng)物研究中發(fā)現(xiàn),3 mg/kg(9 mg)的高劑量產(chǎn)生的短暫毒性(包括脾臟增大和CCL2血清水平升高)最小,且注射后幾個(gè)月仍可檢測到抗體?;谶@些結(jié)果,Moderna啟動(dòng)了一項(xiàng)1期臨床試驗(yàn),并公布了陽性結(jié)果,其中0.1和0.3 mg/kg的劑量耐受性良好,并且mAb的血清水平在1–14 μg/mL的范圍內(nèi),預(yù)計(jì)單次給藥后可對(duì)基孔肯雅病毒具有長達(dá)16周的免疫作用。
脂質(zhì)納米顆粒組裝和結(jié)構(gòu)
目前mRNA脂質(zhì)納米顆粒的生產(chǎn)方法是利用微流體或T型接頭,把含有疏水性質(zhì)的乙醇相和含有mRNA的水相在pH為4的緩沖液(如乙酸)中混合(圖2)。現(xiàn)有的方法(如薄膜蒸發(fā)法和乙醇注入法),由于納米粒子粒徑不穩(wěn)定、mRNA包封率較低、難以擴(kuò)大規(guī)模而很少使用。微流體混合的優(yōu)點(diǎn)是能夠?qū)⒁掖贾蟹浅P◇w積的脂質(zhì)與幾十μL水溶液中的mRNA混合,從而可以篩選許多成分和方參數(shù)。另一方面,T型接頭混合器是大批量商業(yè)生產(chǎn)mRNA LNPs的通用方法,例如目前臨床試驗(yàn)中使用的方法。
最近的一份期刊表明,這兩種方法都可以生產(chǎn)有類似大小和形態(tài)的LNP。兩種溶液的快速混合是控制粒徑< 100 nm的關(guān)鍵,從而避免了其他生產(chǎn)方法所需的尺寸減小的需要(擠出、超聲處理)。如圖2所示,由這些溶液組裝和形成LNP的過程是由疏水力和靜電力驅(qū)動(dòng)的。四種脂質(zhì)(可電離脂質(zhì)、DSPC、膽固醇、PEG-脂質(zhì))最初可溶于乙醇,可電離脂質(zhì)非質(zhì)子化且呈電中性(圖2A)。通常將一體積的含脂質(zhì)的乙醇溶液與三體積的mRNA在pH=4的醋酸鹽緩沖液中混合,這使得脂質(zhì)接觸緩沖液時(shí),它們變得不溶于3∶1的水/乙醇溶劑,并且可電離的脂質(zhì)質(zhì)子化攜帶正電荷,然后與mRNA的帶負(fù)電荷的磷酸骨架靜電結(jié)合(圖2B),形成包封mRNA的脂質(zhì)顆粒,同時(shí)脂質(zhì)在主要是水的懸浮液中變得難溶。
這一過程中的一個(gè)關(guān)鍵成分是PEG-脂質(zhì),因?yàn)镻EG鏈?zhǔn)怯H水性的,從而包覆顆粒,并決定其最終的熱力學(xué)穩(wěn)定尺寸大小。通過改變PEG的摩爾分?jǐn)?shù),可以控制LNP的大小,例如,LNP顆粒大小為100 nm時(shí)PEG-脂質(zhì)的摩爾分?jǐn)?shù)為0.5%,而43 nm時(shí)PEG-脂質(zhì)的摩爾分?jǐn)?shù)為3%。最近一個(gè)研究顯示,當(dāng)mRNA LNP懸浮液在水溶液緩沖液中稀釋或透析以提高pH并去除乙醇時(shí),LNP的結(jié)構(gòu)和大小在混合后繼續(xù)發(fā)生變化。水相和脂質(zhì)相混合時(shí)初始pH值接近5.5,使可電離脂質(zhì)質(zhì)子化,其LNP的pKa接近6.5,可以與mRNA結(jié)合和包裹(圖2B,C)。
之后通過稀釋、透析或切向流過濾提高pH可以中和可電離脂質(zhì),直到pH為7.4時(shí)可電離脂質(zhì)基本不帶電(圖2D)。當(dāng)可電離脂質(zhì)變?yōu)殡娭行詴r(shí),它也變得更難溶解,導(dǎo)致形成更大的疏水類脂結(jié)構(gòu)域,從而促進(jìn)LNP的融合,使LNP的尺寸增大,LNP的中心形成無定形的電子致密相,主要包含與mRNA結(jié)合的可電離脂質(zhì)。據(jù)估計(jì),在這個(gè)過程中,多達(dá)36個(gè)囊泡可以融合形成最終的LNP(圖2C,D)。使用FRET對(duì)證實(shí)了這一融合過程,并進(jìn)一步看到了PEG-脂質(zhì)在這一過程中的作用,因?yàn)榛旌虾蠹尤隤EG-脂質(zhì)與混合前加入PEG-脂質(zhì)以相同的方式控制最終LNP的大小。這項(xiàng)研究和另一項(xiàng)使用中子散射方法的研究也表明,DSPC在LNP的**PEG層的下面形成了一個(gè)雙層結(jié)構(gòu),其**主要是與mRNA結(jié)合的可電離脂質(zhì)(圖2D),同時(shí)認(rèn)為膽固醇分布在整個(gè)LNP中。
圖2:mRNA脂質(zhì)納米顆粒的組裝是通過(A)在微流體或T型接頭混合器中將四種脂質(zhì)(可電離脂質(zhì)、DSPC、膽固醇、PEG-脂質(zhì))在乙醇中與mRNA在pH4左右的水溶液緩沖液中快速混合而實(shí)現(xiàn)的。
(B)當(dāng)可電離脂質(zhì)與水相接觸時(shí),在pH~5.5范圍內(nèi)質(zhì)子化,該pH介于緩沖液的pKa和可電離脂質(zhì)的pKa之間。
(C)可電離脂質(zhì)與mRNA的陰離子磷酸骨架靜電結(jié)合,同時(shí)它在水相中經(jīng)歷具有疏水性,驅(qū)動(dòng)囊泡的形成和mRNA的包裹。
(D)在初始囊泡形成后,通過稀釋、透析或過濾提高pH,中和可電離脂質(zhì),使其疏水性增強(qiáng),從而驅(qū)動(dòng)囊泡融合,導(dǎo)致可電離脂質(zhì)與mRNA進(jìn)一步包裹在脂質(zhì)納米粒的內(nèi)部。通過給LNP提供親水性的外表、確定其熱力學(xué)穩(wěn)定的尺寸大小,PEG-脂質(zhì)的含量停止融合,在PEG-脂質(zhì)層的下面形成DSPC的雙層結(jié)構(gòu)。
疫苗的mRNA遞送系統(tǒng)性能的決定性因素
mRNA遞送系統(tǒng)的性能決定因素是多因素且相互作用的,包括:(1)它們向靶細(xì)胞遞送的能力,并將mRNA有效地釋放至細(xì)胞質(zhì)并進(jìn)行翻譯的效率;(2)佐劑,可以增強(qiáng)免疫反應(yīng);(3)將注射部位或全身分布的過度炎癥和脫靶表達(dá)可能引起的不良反應(yīng)或毒性降至低。
劑量
目前在SARS-CoV-2臨床試驗(yàn)中追求的大劑量范圍給藥(從1 μg到100 μg),能夠評(píng)價(jià)mRNA遞送系統(tǒng)的效率(表1)。臨床試驗(yàn)中的劑量主要分為較高劑量(30-100 μg)的核苷修飾RNA(Moderna,BioNTech),較低劑量(7.5-20 μg)的未修飾的RNA(CureVac,Translate Bio),甚至更低劑量(1-10 μg)的自擴(kuò)增RNA(Arcturus,倫敦帝國理工學(xué)院)。
決定這些劑量的因素有兩個(gè):與恢復(fù)期血漿相比,中和抗體效價(jià)和T細(xì)胞反應(yīng)水平,以及在每個(gè)劑量下發(fā)生不良反應(yīng)的頻率和嚴(yán)重程度。第一階段臨床試驗(yàn)中所有高劑量實(shí)驗(yàn)的中止就證明了SARS-CoV-2疫苗有一個(gè)相當(dāng)狹窄的接受窗口,達(dá)到保護(hù)所需的劑量產(chǎn)生了難以接受的不良反應(yīng)的頻率和嚴(yán)重程度。在BioNTech第一階段臨床試驗(yàn)中測試的兩種核苷修飾的RNA與恢復(fù)期血漿相比,具有較高的中和效價(jià),而由于編碼膜結(jié)合的全長刺突蛋白的較大結(jié)構(gòu)RNA發(fā)生不良反應(yīng)的頻率和嚴(yán)重程度較低,因此進(jìn)行了第三階段臨床研究。值得注意的是,劑量以質(zhì)量表示,而摩爾劑量取決于結(jié)構(gòu)的長度,而且,根據(jù)遞送系統(tǒng)的效率和靶向特性,實(shí)際翻譯的mRNA量只是兩者中的一小部分。
在預(yù)防傳染病的mRNA疫苗的動(dòng)物研究中,當(dāng)使用魚精蛋白、樹枝狀大分子和早期陽離子脂質(zhì)系統(tǒng)時(shí),在小鼠中能夠產(chǎn)生中和抗體或抵御病毒的初始劑量高達(dá)10-80 μg(表3)。當(dāng)之后使用*近的LNPs遞送的mRNA疫苗時(shí),小鼠中和所需的劑量在給藥兩次時(shí)降低到接近1 μg,而對(duì)于未修飾的mRNA,所需劑量更低,接近0.25 μg。對(duì)于自我擴(kuò)增的mRNA,劑量可以更低,只需要兩次給藥0.1 μg或一次給藥2 μg。在較大的動(dòng)物模型(倉鼠、雪貂和非人的靈長類動(dòng)物)中,可用的研究較少,劑量范圍很廣,從5 μg到200 μg,沒有明顯的模式。
有趣的是,當(dāng)使用體表面積將人的劑量轉(zhuǎn)換為動(dòng)物的劑量時(shí),60 kg人的100 μg劑量相當(dāng)于3 kg獼猴的15 μg劑量和20 g小鼠的0.4 μg劑量,這兩個(gè)數(shù)據(jù)與表1和表3中的LNPs大致相同。顯然,給藥系統(tǒng)在確定有效劑量方面起著重要作用。人們強(qiáng)烈希望提高給藥效率,以減少劑量和維持效價(jià),因?yàn)檫@有望通過減少mRNA和給藥載體的局部反應(yīng)和脫靶效應(yīng)來降低不良反應(yīng)的頻率和嚴(yán)重程度。減少劑量還將降低每個(gè)人接種疫苗所需的原材料數(shù)量和相關(guān)成本。特別是當(dāng)前的COVID-19大流行使人們關(guān)注到mRNA LNP疫苗的一些重大供應(yīng)鏈和生產(chǎn)能力的限制,這一狀況可以通過更有效的遞送系統(tǒng)加以改善。
表3:體內(nèi)預(yù)防性接種的mRNA劑量。不同的mRNA傳遞系統(tǒng)和不同的物種顯示了誘導(dǎo)中和抗體效價(jià)或抵御病毒攻擊所需的mRNA的劑量。與早期的遞送系統(tǒng)相比,脂質(zhì)納米顆粒(LNPs)遞送的mRNA的所需劑量減少了10倍。

效價(jià)和遞送效率
已經(jīng)有許多研究試圖確定LNP和其他核酸遞送系統(tǒng)的結(jié)構(gòu)-功能的關(guān)系。決定其效價(jià)或傳遞效率的LNP*常用的參數(shù)是pKa。pKa是使LNP中50%的可電離脂質(zhì)質(zhì)子化時(shí)的pH。到目前為止,LNP的pKa通過一種叫TNS的染料來測定,TNS是帶負(fù)電荷的,當(dāng)與帶正電荷的LNP結(jié)合時(shí),產(chǎn)生熒光增效果好果。
用TNS培養(yǎng)的LNPs在pH范圍較大的緩沖液內(nèi)進(jìn)行熒光測量,以推斷染料與表面電荷的結(jié)合,估算pKa,發(fā)現(xiàn)達(dá)到了大熒光的一半。眾所周知,基于MC3的Onpattro LNP在靜脈注射后使肝細(xì)胞沉默的佳pKa為6.4。TNS的pKa在6.2-6.8范圍內(nèi)對(duì)任何一種LNP都有一個(gè)肝細(xì)胞沉默的佳值。解釋這種依賴于pKa的原理是基于LNP的可電離脂質(zhì)在pH為7.4時(shí)接近中性,而在它進(jìn)入細(xì)胞后,內(nèi)涵體的pH值隨著內(nèi)涵體途徑的演變而開始下降,使可電離脂質(zhì)質(zhì)子化,而可電離脂質(zhì)又將結(jié)合到內(nèi)涵體的一個(gè)陰離子內(nèi)源性磷脂上并且破壞其雙層結(jié)構(gòu),從而將mRNA釋放到細(xì)胞質(zhì)中用于核糖體翻譯表達(dá)蛋白。
內(nèi)涵體逃逸需要可電離脂質(zhì)的另一個(gè)特征,即錐形的形態(tài),其中脂質(zhì)尾部的橫截面大于其頭部。這使得可電離的脂質(zhì)/內(nèi)涵體磷脂離子對(duì)和雙層結(jié)構(gòu)不相容,并且更有可能形成倒六邊形的結(jié)構(gòu),從而破壞內(nèi)涵體的膜結(jié)構(gòu)。這也被稱為分子形狀假說,它解釋了為什么在飽和的C18烷基鏈上引入一個(gè)或兩個(gè)雙鍵會(huì)產(chǎn)生更多的錐形和更少的圓柱形的形態(tài),即膜的破壞和內(nèi)涵體逃逸。
這兩個(gè)C18亞油酸的尾部,與二甲胺頭部的適當(dāng)?shù)?、調(diào)節(jié)好的pKa結(jié)合,是MC3可電離脂質(zhì)所定義的特征。取代MC3用于mRNA傳遞的可電離脂質(zhì)保留了pKa的要求,但通過在烷基尾部引入更多的支鏈來追求更大的內(nèi)涵體裂解特性。例如,來自Moderna的脂質(zhì)H和脂質(zhì)5和Arcturus的脂質(zhì)2,2(8,8)4C CH3一樣,有三個(gè)烷基尾部,而Acuitas的ALC-0315有四個(gè)烷基尾部,A9有五個(gè)烷基尾部(表2)。這種增強(qiáng)的錐形形態(tài)解釋了含有這些可電離脂質(zhì)的LNPs是更有效的遞送載體,具有更強(qiáng)的內(nèi)涵體逃逸。
雖然LNP的pKa和分子形狀假說對(duì)LNP的遞送效率有很好的貢獻(xiàn),但其他因素也很重要,如LNP表面PEG-脂質(zhì)的穩(wěn)定性,以及四種脂質(zhì)在乙醇溶液中的比例,這些因素*終決定了LNP的超微結(jié)構(gòu)。如上所述,PEG-脂質(zhì)通過提供親水性外殼來控制LNP的大小,該外殼在組裝過程中限制囊泡融合,從而使較高的PEG-脂質(zhì)濃度產(chǎn)生較小的LNP。
如一項(xiàng)研究表明,將PEG-脂質(zhì)的摩爾分?jǐn)?shù)從0.25%改變到5%,可以將LNP的大小從117 nm減少到25 nm,而當(dāng)使用摩爾分?jǐn)?shù)為2.5%的PEG-脂質(zhì)時(shí),肝細(xì)胞沉默的佳粒徑大小是78 nm。由于PEG-脂質(zhì)的烷基尾部有14個(gè)碳,它不能穩(wěn)定地固定在LNP表面,隨著可電離脂質(zhì)MC3和DSPC的脫落,它逐漸在循環(huán)中從LNP上脫落。這種PEG脫落被認(rèn)為在一定程度上使LNP轉(zhuǎn)染有效,但如果脫落過強(qiáng),會(huì)導(dǎo)致可電離脂質(zhì)和DSPC的迅速喪失,這將對(duì)內(nèi)涵體逃逸產(chǎn)生不利的影響。
例如,通過將烷基尾部延伸到18個(gè)碳,PEG-脂質(zhì)不會(huì)脫落,但在肝細(xì)胞中也沒有被沉默。另一方面,加入較高濃度的PEG使顆粒變得更小,會(huì)導(dǎo)致更快的脫落、可電離脂質(zhì)丟失、并且減少沉默基因效果。目前,人們對(duì)LNP的不穩(wěn)定和動(dòng)態(tài)性質(zhì)不完全了解。另一項(xiàng)研究(與上面提到的研究類似)還發(fā)現(xiàn),用1.5%的PEG-脂質(zhì)制備的中等直徑64 nm的LNP比更大直徑(100 nm)的LNP(0.5%PEG脂質(zhì))以及更小直徑(48 nm)LNP(3%PEG脂質(zhì))能更有效地遞送mRNA。
然而,通過改變四種脂質(zhì)的摩爾比,在1.5%PEG-脂質(zhì)、直徑64 nm的LNP中,以保持計(jì)算出的LNP PEG層下的DSPC密度為佳值,這樣能夠制備更大尺寸的的(100 nm)LNP,其mRNA表達(dá)與64 nm的LNP相比增加了兩倍。因此,除了LNP的pKa、可電離脂質(zhì)的分子形狀和PEG-脂質(zhì)的動(dòng)力學(xué)之外,更詳細(xì)的LNP超微結(jié)構(gòu)特征和每個(gè)組分的狀態(tài)也決定了其效價(jià)。
內(nèi)涵體逃逸
對(duì)siRNA-LNPs的細(xì)胞攝取和內(nèi)涵體轉(zhuǎn)運(yùn)進(jìn)行了詳細(xì)的研究,并假設(shè)其與mRNA LNPs的細(xì)胞攝取和內(nèi)涵體轉(zhuǎn)運(yùn)相似。一項(xiàng)使用電子顯微鏡中金溶膠粒子計(jì)數(shù)的定量研究表明,對(duì)于MC3 LNP,內(nèi)涵體中只有2%的siRNA從內(nèi)涵體逃逸到胞漿中,導(dǎo)致每個(gè)細(xì)胞中有幾千個(gè)siRNA分子可供沉默。
然而,這個(gè)數(shù)字與在**相關(guān)濃度下每個(gè)細(xì)胞RISC與有功能活性的siRNA的相互作用估計(jì)水平的范圍相同。因此,絕大多數(shù)siRNA注定要進(jìn)行溶酶體降解或通過多囊體(晚期內(nèi)涵體)循環(huán)在體外進(jìn)行釋放。增加LNPs的內(nèi)涵體逃逸是提高給藥效率的主要途徑,主要是通過調(diào)節(jié)LNP的pKa和增加可電離脂質(zhì)的錐形形態(tài)來實(shí)現(xiàn)的。
對(duì)于后者,脂質(zhì)H和脂質(zhì)5含有三個(gè)分支,而在MC3中只有兩個(gè)分支,但具有相似的PKA,與MC3相比,它們的內(nèi)涵體逃逸率變?yōu)樵瓉淼乃谋丁D壳斑€沒有報(bào)道Acuitas ALC-0315的內(nèi)涵體逃逸情況,但Acuitas ALC-0315的肝細(xì)胞沉默效率是MC3的10倍,這表明其更具有錐形的四分支結(jié)構(gòu)也有更強(qiáng)的內(nèi)涵體逃逸。
因此,這些新一代的可電離脂質(zhì)似乎實(shí)現(xiàn)了內(nèi)涵體逃逸率,與MC3 siRNA-LNPs的2-5%相比,接近15%或更高。這一領(lǐng)域的挑戰(zhàn)之一是缺乏可廣實(shí)施的可靠、標(biāo)準(zhǔn)化的內(nèi)涵體逃逸方法。目前已經(jīng)開發(fā)了許多方法,但通常只針對(duì)一個(gè)實(shí)驗(yàn)室組。*近還發(fā)現(xiàn),mRNA發(fā)生胞吐的量與釋放到胞漿中的量相似。MC3 LNPs在MC3的晚期內(nèi)涵體和NP1復(fù)合體中被解離,MC3LNPs和mRNA被重新包裹成外泌體,并從細(xì)胞中輸出。這些內(nèi)-外泌體與*初的MC3 LNPs具有相似的mRNA遞送能力,但內(nèi)-外泌體可以運(yùn)輸?shù)讲煌慕M織,且似乎免疫**能力較低。LNPs攜帶的mRNA的外泌體重新分布的潛在意義仍有待探索。
電荷和配體介導(dǎo)的靶向
使用**帶電的陽離子脂質(zhì)的早期脂質(zhì)納米顆粒很大,由于它們的**帶正電荷,很快就被**,并且他們通常是以肺部為靶點(diǎn)。BioNTech的研究小組減少了DOTMA/Dope mRNA LNPs中陽離子DOTMA的數(shù)量,直到由于NP比小于1的陰離子mRNA過量而導(dǎo)致凈電荷帶負(fù)電。
靜脈注射這些帶負(fù)電荷的且長度為300 nm的mRNA LNPs可以導(dǎo)致脾臟靶向和樹突狀細(xì)胞的mRNA表達(dá),它們能夠介導(dǎo)適應(yīng)性和I型干擾素介導(dǎo)的先天免疫機(jī)制用于**免疫**。同樣,用C12-200原型LNP生產(chǎn)脾靶向的mRNA LNP,但用小的、樹枝狀的可電離脂質(zhì)Cf-Deg-Lin代替C12-200,Cf-Deg-Lin具有四個(gè)亞油酸烷基鏈和四個(gè)氮原子,TNS pKa為5.7。LNP的這種極低的pKa將確保可電離脂質(zhì)在pH低于7之前不被質(zhì)子化,從而制備出一種包載帶負(fù)電荷的mRNA的LNP,直到內(nèi)涵體途徑晚期,并輸送到脾臟。
他們發(fā)現(xiàn)脾臟中表達(dá)mRNA的主要細(xì)胞群是B淋巴細(xì)胞,根據(jù)流式細(xì)胞術(shù)分析,其中7%的B淋巴細(xì)胞表達(dá)mRNA。*近,利用三種不同的堿性(MC3、C12-200或5A2-SC8)作為可電離脂質(zhì),混合在一定摩爾分?jǐn)?shù)的**性陽離子脂質(zhì)(DOTAP)或**性陰離子脂質(zhì)(18PA)中,使LNPs具有凈正電荷、凈負(fù)電荷或凈中性電荷,從而實(shí)現(xiàn)了荷電靶向。與上述發(fā)現(xiàn)一致
